2 resultados para Elastase

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use enzymatic manipulation methods to investigate the individual and combined roles of elastin and collagen on arterial mechanics. Porcine aortic tissues were treated for differing amounts of time using enzymes elastase and collagenase to cause degradation in substrate proteins elastin and collagen and obtain variable tissue architecture. We use equibiaxial mechanical tests to quantify the material properties of control and enzyme treated tissues and histological methods to visualize the underlying tissue microstructure in arterial tissues. Our results show that collagenase treated tissues were more compliant in the longitudinal direction as compared to control tissues. Collagenase treatment also caused a decrease in the tissue nonlinearity as compared to the control samples in the study. A one hour collagenase treatment was sufficient to cause fragmentation and degradation of the adventitial collagen. In contrast, elastase treatment leads to significantly stiffer tissue response associated with fragmented and incomplete elastin networks in the tissue. Thus, elastin in arterial walls distributes tensile stresses whereas collagen serves to reinforce the vessel wall in the circumferential direction and also contributes to tissue anisotropy. A microstructurally motivated strain energy function based on circumferentially oriented medial fibers and helically oriented collagen fibers in the adventitia is useful in describing these experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of local structure, in short peptides has been probed by examining cleavage patterns and rates of proteolysis of designed sequences with a high tendency to form β-hairpin structures. Three model sequences which bear fluorescence donor and acceptor groups have been investigated: Dab-Gaba-Lys-Pro-Leu-Gly-Lys-Val-Xxx-Yyy-Glu-Val-Ala-Ala-Cys-Lys-NH2 ï EDANS Xxx-Yyy: Peptide 1=DPro-LPro, Peptide 2=DPro-Gly, Peptide 3=Leu-Ala Fluorescence resonance energy transfer (FRET) provides a convenient probe for peptide cleavage. MALDI mass spectrometry has been used to probe sites of cleavage and CD spectroscopy to access the overall backbone conformation using analog sequences, which lack strongly absorbing donor and acceptor groups. The proteases trypsin, subtilisin, collagenase, elastase, proteinase K and thermolysin were used for proteolysis and the rates of cleavage determined. Peptide 3 is the most susceptible to cleavage by all the enzymes except thermolysin, which cleaves all three peptides at comparable rates. Peptides 1 and 2 are completely resistant to the action of trypsin, suggesting that β-turn formation acts as a deterrent to proteolytic cleavage.